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Dynamics of vorticity fronts 

By MELVIN E. STERN AND LAWRENCE J. PRATT-f 
Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island 02881 

(Received 25 June 1984 and in revised form 16 July 1985) 

Vorticity fronts can form in a shear flow as the result of fast patches of fluid catching 
up with slower ones. This process and its consequences are studied in an inviscid 
two-dimensional model consisting of piecewise uniform-vorticity layers. Calculations 
using the method of contour dynamics for ‘intrusive’ initial states indicate that the 
leading edge of the front evolves into a robust structure whose propagation speed 
can be accounted for by a simple shock-joining theory. Behind the leading edge 
several different effects can occur depending upon the relative amplitude of the 
intrusion. These effects include lee-wave generation with possible wave breaking and 
folding of the front. A critical value of the frontal slope, above which wave breaking 
occurs, is suggested. 

1. Introduction 
A vorticity front, i.e. a surface separating regions of significantly different 

vorticities, can arise in several ways. A simple laboratory example occurs when the 
laminar flow from a round nozzle is increased from one steady discharge to another : 
the vorticity front forms in the intervening region separating the fast stream from 
the slower one (Stern & Vorapayev 1984). Dinkelacker & Langenheineken (1983) 
indicate that such coherent vorticity fronts can form in three-dimensional turbulent 
flows. We may also mention some important oceanic vorticity fronts, such as the 
inshore edge of the Gulf Stream in the Florida Strait (Stern 1985) as well as in the 
core further downstream (Hall & Bryden 1984). 

A starting point for the discussion of the formation of fronts in a homogeneous fluid 
is provided by studies (Stern & Paldor 1983 ; Russell & Landahll984) of the evolution 
of large-amplitude and long-wave perturbations in a shear flow. In this asymptotic 
limit the downstream pressure gradients are neglected and (incompressible) ‘ shock ’ 
singularities form where fast fluid overtakes slow fluid. To proceed further Stern & 
Vorapayev (1984) proposed a shock-joining theory, across which the mass and 
vorticity fluxes are conserved, and due recognition is given to the stagnation pressure 
gradient at the shock front. A simple formula was thereby found for the propagation 
of these two-dimensional shocks in a shear flow, and the result was found to be 
consistent with the experimental results for laminar jets. Further support for this 
simple formula and picture is provided by the present study, which gives ‘exact’ 
solutions of the full Euler equations for the special case of piecewise uniform-vorticity 
flow (figure 1). 

For the initial state shown in figure 1 (a) the lower layer, having unit non-dimensional 
vorticity, extends from x = - 00 to x = + co, and L(x, t )  denotes the local non- 
dimensional thickness in the y-direction. From y = L to y = 00 there is an irrotational 
layer of fluid, and y = 0 is a rigid slippery boundary. As x++ 00 L(x, t )  approaches 

t Present address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543. 
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lrrotational 

Leading 

FIGURE 1 .  Schematic or uniform-vorticity layer below y = L(I,  t ) .  (a) An initial state. ( b )  Initial 
state when L, = 0. (c) At a later time the front steepens and propagates. (a?) The front of the nose 
steepens at a later time, ‘backward’ wave breaking occurs, and irrotational fluid is entrained. 

the constant value L,, L+ L, as x+- co, and we suppose that initially L varies slowly 
in between. The extreme value LJL,  = 0 (figure l b )  yields a blunt nose and is of 
particular interest because it corresponds to the frontal intrusion of a fluid of one 
vorticity into a fluid of completely different vorticity (cf. Stern & Vorapayev 1984). 
But for all values of LJL, < 1 (figure l c )  we shall show that a leading edge may be 
defined for the intrusion which propagates in a stable and well-defined way. 

The piecewise uniform-vorticity model enables us to eliminate the y-dimension 
from the Euler equations (§2), and thereby reduces the problem to an integrw 
differential equation for L(x, t )  (Zabusky & Overman 1981). When a Llax 4 1 this 
reduces to the previously mentioned long-wave equations, according to which each 
L propagates with a speed L ,  so that the gently sloping regions in either figure 1 (a)  
or 1 (b) will steepen with time. The numerical solutions for the full equations will show 
that the short-wave effects cause the leading edge of the intrusion to  equilibrate, as 
meumed in the previously mentioned shock-joining theory, and to propagate 
approximately at the speed u* = i (L,+ L,). One new qualitative effect appearing 
behind the leading edge (figure Id) shows the ‘backwards’ breaking of the frontal 
intrusion followed by the engulfment of irrotational fluid. This effect is similar to 
that found by Pullin (1981) for the case of x-periodic disturbances on an interface. 
Figure l ( a )  differs from Pullin’s model insofar as the mean interface heights are 
different a t  x = f 00. We shall also show that a kind of lee wave (figure 1 b)  develops 
behind the leading edge when L,/L,  is not too small, whereas when LJL, 4 1 the 
waves behind the leading edge break as in figure 1 ( d ) .  Wave breaking is said to  occur 
first when L(x, t )  becomes multi-valued, and the term ‘folding’, ‘overturning’ and 
engulfment of irrotational fluid are used to describe the subsequent events. The 
critical value of aL/ax for wave breaking is discussed in $6. 

2. Contour dynamical equations 
I n  a piecewise uniform-vorticity flow (figure 1 )  the non-dimensional stream 

function satisfies V2$ = 1 for L(x, t )  > y > 0;  V2$ = 0 for 00 > y > L ;  and 
+(x, co, t )  = 0 and $(x, 0, t )  = constant. The latter boundary condition can be 
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satisfied by introducing image vortices in the solution of Poisson's equation, and thus 
we get 

When L, = 0, a nose point xo( t )  exists such that L(zo(t) ,  t )  = 0 and the (-integration 
extends from - 00 to 5 = xo( t ) .  

It is easy to show that (1) (and (2)-(3) below) is valid even if L is a multi-valued 
function of x, in which case (L, x) are expressed as single-valued functions of distance 
measured along the curve. 

For any point (L, x) on the curve the Lagrangian velocity components v = a+/ax, 
u = -a$/ay  are: 

v = dL/dt ,  (2) 

u = dx/dt, 

where 
(3) 

and where L(-m,t)  = L,, 

L(0O,t) = L,.  

When L, = 0, ( 7 a )  is replaced by 

w!,(t), t )  = 0, ( 7 b )  
and the upper limit ( 0 0 )  in (4 )  and (5a) is replaced by the nose position zo(t). These 
are the integro-differential equations for the evolution of L(x,  t ) .  

3. Limiting and special cases 
3.1. Periodic disturbances of small amplitude 

It is easy to show from the results of $2 that infinitesimal amplitude perturbations 
of an undisturbed interface at L = 1 (i.e. L, = L, = 1) propagate with speed 

1 
2k (8) c = - (1 - e-zk) 

where k is the wavenumber (also see Pullin 1981). These waves propagating in the 
same horizontal direction as the shear flow have the 'long-wave' limit (k < 1)  

C =  1 - k +  ..., 
while the short-wave limit (k % 1 )  gives 

1 
c=- 

21kl' 

(9) 
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3.2. The nonlinear, long-wave limit 
Suppose that 0 ( 1 )  variations in L occur slowly in x (and t )  ; i.e. assume L is a function 
of ex where s+O. We may then replace aL(x- E)/ax by (aL/ax) (1 + O(s ) ) ;  and likewise 
E2+{L(x, t ) -L(x-&, t ) }2  N f 2 ,  so that the asymptotic value of (5a) is 

The corresponding long-wave limit of u must also have a leading term, which vanishes 
as aL/ax + O ,  as may be verified by using L(x, t )  = constant in (4) and by manipulating 
the integrals. Therefore the exact kinematical boundary condition 

reduces to 
aL aL 
at ax - + L - = o  

in the s+O limit, implying that aL/at is small to the same order as aL/ax. 
This simple result (13) can be readily obtained using the Euler equations without 

going through the formidable route of (2)-(5) (see Stern & Paldor 1983 for the 
procedure). It implies that an observer moving with a fixed large value of L will 
overtake one moving with a smaller L ;  or that negative aL/ax will steepen with time 
and lead to a singularity at t = - [min aL/ax]-l. 

3.3. Weakly nonlinear limit 
Reconsider disturbances having small ( O ( B ) )  amplitude and small ( O ( k ) )  spatial 
variation about L = 1. The nonlinear equation (13) suggests the wave speed is 
l+O(s) ,  while the linear and weakly dispersive relation (9) gives a speed l + O ( k ) .  
These results suggest that a balance between nonlinear and dispersive effects can be 
achieved by allowing the spatial variation of the front to be as small as the amplitude; 
k = O(s) .  Such a balance leads to the Benjamin-Ono equation (Benjamin 1967) : 

where 
00 1 ” o  

9(g(x) )  = - s dk {I k 1 ePiks s dx’ g(x’ )  eikz 
2 R  -m -CC 

(The details of the derivation.appear in Appendix A.) As shown by Benjamin (1967), 
(14) admits progressive wave solutions as well as a solitary wave. Reference is also 
made to the soliton solutions obtained by Meiss & Pereira (1978) and Chen, Lee & 
Pereira ( 1979). 

3.4. The steep-slope limit 
Now consider the case where L increases rapidly (aL/ax = O ( E - ~ ) )  from one constant 
value L,, to another constant L, in a short intervalz & O(E) .  This isa ‘backward ’-facing 
step, whereas if L decreases rapidly (as in figure 2) we have a ‘forward’-facing step. 
An asymptotic theory for the large (l/s) value of aL/at will be developed in order 
to ascertain whether or not max aL/ax continues to increase and wave breaking occurs 
later in time. With the upper limits set equal to + co in (4)-(5a) we obtain the lead- 
ing (€ = 0 )  terms in u(L),  v (L)  as follows. Break the x-integration interval into 
three parts, the middle one of width €:-to being the dominant contributor to 
v(L)  (in L, < L < Ll ) ,  but a negligible contributor to u(L) .  The value of the latter (in 
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(4 (6) 

LAf //='A/ 
X = - W  x = o  -w x = o  

FIQURE 2. Sketch of two initial conditions used. (a) Parabolic nose for 
- W < x < 0. (b)  Linear nose for - W < x < 0. 
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L, < L < L,) is therefore obtained from the two adjacent integration intervals, in 
one of which L = L,, and in the other L = L,. This gives 

4xu( L)  

and therefore u(L) = +(L,-L)  for (L,  < L < L,) .  (15) 

Since u(L,) > u(L,) we see that the closely separated points x(L,), z (L,)  tend to 
converge with time. For a forward-facing step (L,  > L > L,),  on the other hand, we 
obtain u(L) = i (L,-  L ) ,  which shows that x(L,), z(L,)  diverge with time, and that a 
'forward '-facing step never breaks. Thus the forward steepening implied by long- 
wave theory (13) always equilibrates at a finite aL(z, t ) / a z ,  and the steepening that 
occurs on short spatial scales is opposite in sense to that predicted by the long-wave 
equation ( 13). 

Returning to the backward-facing step (15) we find that the corresponding normal 
velocities 

2xv(L) = (L-  L,) In (L-  L,) + (Ll -  L)  In (L,  - L)  

- ( L  + L,) In ( L  + L,) + ( L  + L,) In ( L  + L,) (16) 

are O(1) functions in L, < L < L,. Therefore the asymptotic (steep-slope, short-time) 
version of (12) is aL/at + u aL/ax = 0, or 

aL aL 
ax ,++(L,-L) - = 0. 

This implies that each value of L (in the steeply sloping region) propagates with 
constant speed +(Ll - L)  > 0, and consequently L(z,  t )  will become multi-valued, or 
wave breaking and overturning will occur, in the (short) time 

(18) 
2 

t -  - max o ) / a x )  

after the initial condition. 

3.5. Miscellaneous observations on the Case L, = 0 
When L, = 0, (4) together with the nose condition (7b) give an expression for the 
propagation speed of the nose : 
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If L( - 00, t )  = 1, and L ( x ,  t )  decreases monotonically to the nose (as in figure 2) then 
the above expression gives 

U ,  <+. 
The equality sign holds, and the nose speed equals 4, when L = 1 everywhere except 

at  the nose (where it decreases rapidly to zero). This L(x, t )  might be regarded as a 
solution of the ‘long-wave equations’ ($3.2)  supplemented by our shock-joining 
condition. This solution with (20)  conserves mass in the high-vorticity layer, and it 
is also consistent with the qualitative idea of 53.4 pertaining to the lack of 
wavebreaking in forward-facing steps. The first indication of the limitations of this 
‘solution’ is revealed by (5a)  which requires that if L decreases monotonically with 
x then v > 0 ,  and thus L cannot remain monotonically decreasing as implied above. 
A useful explicit calculation of V ( E ,  0) for the initial L(z,  0) shown in figure 2 (b) is 

Wz(h-z)2+(1 +z),  
V(h- z ) ,+  (1 - 2 ) 2 ’  

41tv = I,’ dz In 

X h E - - > l  w’ ’ 

and for large negative x this becomes 

( x  4 - W ) .  
1 

2nx2 
V + -  

For W = 0 the corresponding horizontal velocity is 

-3.- I2nx 1-1 .  

Equation (21 b) shows that positive v occur in the region of constant L [whereas the 
long-wave theory (13)  implies that v = 0 here] so that the temporal evolution of both 
figures 2 (a) and (b) may be expected to develop a maximum L ( x ,  t )  > 1, with positive 
aLli3x behind the nose of the front. This is the first indication of important qualitative 
effects (overturning) which are entirely missed by the long-wave-shock-joining 
theory. 

4. Numerical method 
The numerical method used to integrate (2)-(5) is essentially that of Zabusky, 

Overman and co-workers (see Zabusky & Overman 1981 and references contained 
therein). Briefly put, the method is based on a Lagrangian scheme in which tagged 
fluid particles on the front are followed. The integrals ( 4 )  and (5) are evaluated using 
the trapezoidal rule, with tagged particles marking the endpoints of the trapezoids, 
and the particle motion is computed by integrating (2) and ( 3 )  using the Adams 
predictor-corrector method (Gear 1977). The novel features of our algorithm are 
due to the end conditions a t  the ‘tails’ and ‘nose’ point of the intrusion. In 
Appendix B, these modifications are described and a listing of the finite-difference 
equations is given. In  all cases the number of tagged frontal particles is 160. 

5. Results for the intrusive solution 
We first describe the numerical results obtained using initial states of the forms 

shown in figure 2, with L, = 0 ,  L, = 1. Results for this case are reproduced in a frame 
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X 

FIQWRE 3. Evolution of parabolic nose with W = 5.0. The coordinate 
system moves with the nose speed. 

1.4 - 
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0.2 - 

-10 -8  -6 -4  -2 0 
X 

FIQURE 4. Continuation of figure 3 showing the front at t = 21 and t = 28. 

X 

FIGURE 6. Continuation of figure 4 to t = 36. Note formation of multiply 
connected region and ‘fission’ near x = -5, 
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FIGURE 6. Nose velocity U, aa a function of time for figures 3-5. Smoothing and adding 
computation points (see text) waa done only in between each sequence of ‘dots’ and crosses. 
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FIGURE 7. Evolution of linear profile (in figure 2 b )  for W = 0.1. 
(a) t = 0.2, ( b )  3.0, (c) 4.4, (d) 6.0, (e) 9.0. 

of reference moving with the nose speed U,,  and with the nose positioned at x = 0. 
First consider the initial condition (figure 2a) 

1 (x < -4, 
L(x’ = ( -$x(x+ 10) ( - 5  < x < 0 ) ,  

with the Lagrangian points distributed between x = - 8.0 and x = 0. The steepening 
(figure 3) of the forward edge of the front from t = 0 to t = 5.0 is in qualitative accord 
with long-wave theory. Note that at t = 5 the nose speed (figure 6) is considerably 
less than the averaged velocity (t) within the lower layer at x = - 00, and this 
difference accounts for the temporally increasing area bounded by the curves in 
figure 3. Also note that the slope of the leading edge of the front seems to reach a 
limiting value at t = 21. Figure 4 shows that behind the nose continuing steepening 
occurs with wave breaking (aL/az = + CO) at t 24. At t = 36 (figure 5) we see the 
engulfment and entrainment of the irrotational fluid by the cyclonic nose vortex. 
Figure 6 suggests that the nose velocity eventually levels off at  a value near 2. 
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FIQURE 8. Continuation of figure 7 at (a) t = 12, ( b )  15, (c) 19. 

I I I I l o  
-3.0 -2.5 - 2.0 - 1.5 

__c 

X 

FIQURE 9. Enlarged view of t = 19 in figure 8, showing the onset of multi-connectedness and 
‘fission’ at x = -3.2. The dashed portions of the front show regions of numerical uncertainty. 

These results can be compared with those for a quite different initial condition 
(figure 2 b) having much smaller initial scale : W = 0.1. The initial slope here is so steep 
that the asymptotic theory of $3.3 applies, and thus the magnitude of the nose slope 
decreases with time because aL/ax is negative. The temporal evolution is shown in 
figures 7-9, and the nose speed in figure 10. Once again there is a temporal 
equilibration of the leading edge, and in order to compare this with the previous case 
we have plotted (figure 11) the frontal shapes at ‘corresponding times’, for which the 
nose speeds are approximately equal. Figure 11 suggests a similarity solution for the 
leading edge of the front with U ,  as the relevant scaling parameter. In any case the 
qualitative behaviour of the leading edge, with regard to structure, coherence and 
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FIQURE 10. Nose speed for figures 7-9. Compare to figure 6. 
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FIQURE 11. Comparison of the nose shapes for the two different numerical runs and values of t for 
which the two nose speeds are nearly equal (see text). ‘Similarity’ for the nose is suggested as well 
as ‘robustness’. 

robustness, is in accord with the implication of the simple long-wave-shock-joining 
theory. The importance of this lies in the fact that  the latter theory is analytically 
tractable for the three-dimensional problem (see section VI  of Stern & Paldor 1983), 
whereas the numerical method is not. 

3.0 of wave breaking in figure 7 is less than the corresponding time 
in the previous case because the initial width W is much smaller. But the subsequent 
engulfment and entrainment effects (figure 8) are qualitatively similar (to figure 5), 
and in both cases there are signs of a new negatively sloping front forming behind 
the nose vortex. 

The calculations have been stopped at the indicated times because of the tendency 
for multi-connected regions to form, whereas a basic idea of inviscid theory seems 
to be that multiply connected regions cannot form a t  any t if the region is simply 
connected at t = 0. Implementation of the present algorithm becomes difficult when 

The time t 
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1 =  40 
n 

-60 -40 -20 0 20 40 60 80 100 120 140 160 

X 

FIGURE 12. Time evolution of the case L(z,O) = 1 --a tanh (0.2s) with a = 0.9. 

grazing contact occurs (as in figure 9) between the line segment connecting points 
(j,j+ 1 )  and the segment connecting (k, k+ l),  where j =k k. If the algorithm con- 
verges at such times (and if solution of the Euler equations exists) we require that 
the spacing between points be kept much less than the decreasing distance between 
pointsj and k. It is not known whether the grazing contact shown in figure 9 is the 
beginning of a real eddy fission, such as would occur without 'trauma' in a viscous 
fluid. Figure 9 at x = - 1.75 reveals another and more common topological cata- 
strophe, wherein two nearby segments intersect. This and the other jagged feature 
occur in regions of high front curvature where resolution problems become acute 
(Zabusky & Overman 1981). They can often be removed without noticeable effects 
elsewhere by deleting one point or by smoothing. As an example of the latter refer 
to figure 6, wherein the first set of dotted points are part of an integration extending 
to t = 10 with no smoothing. We then used as initial conditions the data at t = 5, 
with a few data points omitted and added as previously mentioned. The numerical 
calculation was then run, and the first part of the result is indicated by the first set 
of crosses. In this way we obtained overlapping sequences of results, from which we 
could ascertain the effects of the smoothing mentioned above. The most serious error 
was in the computation of the nose speed, as can be seen from the slight jagged 
appearance of the sets of data points in figure 6. Otherwise the effects of smoothing 
are believed to be inconsequential. 

Next consider the case of finite L, as determined by the initial condition 

L = 1-a tanh($) (0 < a < i ) ,  

so that L, = 1 +a  and L, = 1 --a. Figure 12 shows the frontal evolution which results 
from the case a = 0.9. The frame of reference is now a t  rest and the intrusion or ' bore ' 
moves from left to right. As before, the leading edge of the bore initially steepens 
(0 < t < 20) and eventually reaches a state of quasi-equilibrium ( t  = 30). But now 
secondary waves appear behind the leading edge before the wave breaking occurs at 
t 2 40. 
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FIQURE 13. Same as figure 12 but with a = 0.8. 

Figure 13 shows a slightly smaller-amplitude (a = 0.8) case. Here the leading edge 
evolves as before but the secondary waves become more fully developed before 
overturning occurs (now at t z 90). Curiously, it  is the second, rather than the first, 
wave that overturns. 

Wave breaking is entirely absent in the case a = 0.6 (figure 14). Here the front 
evolves in the manner of the classical undular bore of surface gravity waves, with 
the excess mass carried by a train of undulations whose mean level is the level far 
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FIGURE 15. Plot of contours of uniform L(z,  t )  as a function of 2 and 
t for the undular bore of figure 14. 

upstream L, = 1.6. Figure 15 contains a characteristic plot showing the timespace 
path of equal values of L in the developing bore. This plot reveals a number of 
interesting features. First, the leading edge quickly equilibrates and propagates with 
speed = 0.96, which is approximately the average long-wave speed !j(L,+L2) = 1.0. 
(The leading-edge speeds for the case a = 0.9 and a = 0.8 are 0.95 and 1.05 
respectively.) If this speed is substituted for c in (8) and the mean level L = L, is 
used, a characteristic wavelength A = 2x/k = 19.6 is obtained. This length has been 
indicated in figure 14 and can be seen to be typical of the length of the undulations. 
Secondly, undulations following the leading edge also equilibrate and propagate with 
remarkably constant form at the speed of the leading edge, as revealed by the parallel 
lines of equal L in the upper right-hand part of figure 15. Finally, all new troughs 
and crests are created near the origin, as indicated by the position of the cusps in 
the L = 1.6 contours of figure 15. No propagation occurs to the left of the origin, a 
fact consistent with the non-negativity of the group velocity : 

The quasi-steady nature of the leading wave is further illustrated by the time 
evolution of the crest and trough height, labelled L,,, and Lmin, as shown in 
figure 16. Both values experience rapid changes from t = 0 to t = 50, and then change 
more gradually with an eventual levelling off near the respective values L, & 2a ( = 0.4 
and 2.6). Unfortunately, resolution problems begin to occur after t = 100 and further 
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FIGURE 16. Elevation of the crest (Lmax) and trough (Lmin) of the first undulation 
in the bore of figure 14 as a function of time. 

integration becomes unreliable. Nevertheless, one might ask whether some scaling 
law exists which relates the mean thickness L with the length h and amplitude A 
of these waves. The answer to this question is unknown; however, we note that the 
steepness A/(2h)  of the quasi-steady waves is 0.41 & 0.05, a value that will reappear 
in our discussion of breaking waves. 

6. The isolated-wavebreaking model 
As indicated in $1 (see also $3.4) we want to isolate the wave-breaking effect by 

using a simpler model in which the initial L increases monotonically from L, to  L, 
as z increases. Figure 17 shows the evolution of an initially piecewise linear L(z,t) 
with max aL(z, O)/ax = 2, and for visual convenience the reference frame here has 
been translated uniformly. The graph of each numerical solution up to the time of 
wave breaking is accompanied by the graph of (17), which consists of broken straight 
lines. We see that this simple solution quite nicely captures the overturning 
effect-although i t  fails to predict the decreasing minimum value of L, which is 
obviously important in the post-wave-breaking stage (t = 2.0). 

Table 1 indicates the time of wave breaking for this initial L(z,O) and for three 
other piecewise linear L(z, 0), which differ only in the value of the maximum slope. 
For maxaL(z, O)/az = 0.25 no sign of wave breaking (or wave steepening) was 
observed up to t = 6.0, and we believe no wave breaking will occur at later time. Also 
computed was the case of a hyperbolic tangent L(z, 0) having the same L( - w,O) 
and L( + 00, 0) but with a maximum slope of 0.75. Wave breaking occurs for this and 
for the larger slope (4.0) indicated in table 1,  but wave breaking does not occur when 
maxaL(x,O)/az is as small as 0.4. This is strong evidence that overturning in a 
piecewise uniform-vorticity flow occurs when max aL(z, O)/az exceeds a critical value 
between 0.4 and 0.75. This compares reasonably well with Pullin’s (1981) values 
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FIQURE 17. Temporal evolution of a 'backward'-facing step w indicated by the piecewise-linear 
L-profile at t = 0 (this extends to z = f co without a nose). The coordinate system used in this figure 
(and only here) is uniformly translating at  speed unity to avoid overlapping L(z,  t )  profiles. The 
thin-lined profiles at t = 0.4, 0.8, 1.0 are based on the asymptotic steep-slope theory, whereas the 
heavy curves are more-exact numerical calculations. The theory predicts the time ( t  = 1.0) of 
backwards wave breaking quite well. 

t ,  or maximum time 
Initial shape of profile max a&, 0 ) p z  of computation 

Piecewise linear 2.0 (figure 17) 
1 .o 
0.75 
0.25 

Hyperbolic tangent 4.0 
0.75 
0.4 
5 (figure 18) 
5 

L(z,  0) = 1 +0.5( 1 + 100z8)-' 
L(z,  0) = 1 +0.1(1 +2500za)-l 

TABLE 1. Time t, of wave breaking 

1 .o 
2.0 
2.4 
None ( t  G 6.0) 
0.5 
3.5 
None ( t  Q 20.0) 
1.5 
1.5 

(0.29-0.39) obtained for sinusoidal disturbances. Note that the steepness of the 
equilibrated waves of figures 13 and 14 also fall within this range (see $5). The pen- 
ultimate line in table 1 shows that an isolated bell-shaped disturbance (figure 18) can 
also break if its max aL/ax is sufficiently large. According to the asymptotic theory, 
the breaking time (18) should become independent of the distance of the lower 
boundary (y = 0 )  from the interface. To check this it was more convenient to keep 
the latter distance and maxaL(z, O)/az constant, while reducing the amplitude and 
2-scale by a factor of five, as indicated in the last line of table 1. The constancy 
of tB verifies the similarity point at issue. 
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FIQURE 18. Initial L(z, 0) = 1 +0.5( 1 + 10Oz2)-'. Profiles at t = 1.5 (curve b)  and t = 5.0 (curve a). 

01 

I 
I 

I I I 1 m 

FIQURE 19. Breaking time t, as a function of the amplitude factor LJ2a for the initial profile 
L(x, 0) = 1.0-a tanh (0.22). In addition to the three data points shown, the case L,/2a = f waa 
computed with the result t, = co. 

It may be asked what 'forward '-facing disturbances lead to 'backward ' wave 
breaking. Figure 19 shows breaking time as a function of the amplitude factor LJ2a 
for the forward-facing, hyperbolic-tangent disturbances exemplified in figures 12-14. 
The figure indicates that no breaking occurs (or, at least, that the breaking time 
becomes enormous) for values of LJ2a > 1 .l. 
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7. Conclusions 
The numerical solutions of the two-dimensional Euler equations for a piecewise 

uniform-vorticity flow verify the simple and apparently general idea that a steeply 
sloping and robust leading (frontal) edge forms when a patch of fast-moving fluid 
catches up with a slower patch. Such a coherent feature might therefore be expected 
as an intermittent feature of large-Reynolds-number shear flow. 

Also of interest are the effects which occur behind the leading edge as time 
advances. For large amplitudes (i.e. values of LJ2a < 0.11) wavebreaking and 
engulfment of irrotational fluid occurs. For smaller amplitudes (LJ2a > 0.11) a lee 
wave (reminiscent of the undular bore in gravity waves) develops behind the leading 
edge of the shear intrusion, and each successive wavelet tends to equilibrate in 
amplitude and preserve its form. 

This work was supported by the Office of Naval Research under contract 
NOOO14-81-C-0062. The authors wish to thank Mrs L. Allen for typing the 
manuscript. 

Appendix A. Weakly nonlinear limit 

a/ax - B ,  so that aL/ax = O(e2) and thus (5a) reduces to 
We document the case in which L - 1 = O(E)  is as small as the spatial variation 

The neglected terms here are O ( k ) ,  and the integral is O(e3) since L- 1 = O ( E ) .  
Therefore aL/a( in the last integral may be replaced by aL/ax, whereupon we get 

The first integral here is merely the contribution of linear theory, and its long-wave 
expansion is most readily obtained by inverting the Fourier transform of In z2 / (z2  + 4) 
as follows : 

aL aL 
= --+&-), ax 

where, following Benjamin (1967), we have introduced 

9 ( g ( x ) )  = jm dk I k I e-ikz jm dx'g(x') eikz' 
2x -w -m 
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(3 aL 
ax 

v = - L - + 9  - + 0 ( € 4 ) .  

Since u is of the same order as v, (13) again approximates to v = aL/at, and we then 
obtain the Benjamin-Ono equation: 

(3 aL aL 
at ax - + L - - 9  - = o .  

Appendix B. Numerical method 
Consider n material particles with initial positions x,(O) and L,(O), distributed along 

the front, with i increasing from left to right. The material points extend over the 
curved segment of the front and can be redistributed from time to time to maintain 
the required resolution. 

First consider the case of non-zero L,. Within the moving portion of the front, the 
integrals (4) and (5a) are evaluated using the trapezoidal rule, as in the algorithms 
of Zabusky & Overman (1981) or Pullin (1981). The novel feature of the present 
algorithm involves the special treatment of the tails x < x,, and x > x,. If x1 and 
x ,  are positioned sufficiently far from the primary region of frontal movement, then 
aL/ax = 0 in the tails and (5a) gives v = 0. Part of (4) can also be evaluated 
analytically at any xi by substituting the constant value L, (or L,) for L(E, t ) ,  so that 
the contributions to u from the tails are 

I ='J,1 4n: In G,(x,, E )  dE 

= A(L2- L, + I L, - L, I) -R(x,-x,, I L, - L, I) 
+ 2R(x, - x,, Lt)  - R(x,  - x,, L, + L,), 

1 frn 

and 

and 

& 
= & In ( 2 ,  +a2) - 2&+ 2 1 a I tan-'- 

l a l '  
The integrals (4) and (5a)  were indented at  the logarithmic singularities, and 

analytic approximations for the latter small intervals were obtained. In summary, 
the difference approximations to (4) and (5a)  are 

u, = {i i (xj-xj-,) In [ ~ , ( x , ,  x j )  ~ , ( x , ,  +)I 
4n: 2 j - 2 .  

+R(x,+,-x,, 2LJ+R(xi-xi-1, 2L,)-2(x,+,--,-,) 
c / * Z , 2 + 1 )  
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where 

WhenL, = 0,~~ischosentocoincidewiththenose (i.e.L(z,) = 0). TheE-integration 
is then carried out from -a to z, and the contribution from the right-hand tail 
x > z, in (B 1) is absent. Also it is advantageous to carry out the computation in 
a frame of reference moving at the nose speed U ,  . The latter is effected by subtracting 
from (B 1) the difference approximation to (19) : 

+ 2x - 2[R( - zlr L,) - R( - zl, O ) ] }  . (B 3) 

The motion of the frontal particles is computed from (2) and (3) using a version 
of the Adams predictol-corrector method due to Gear (1971). 
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